INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI
films the text directly from the original or copy submitted. Thus, some
thesis and dissertation copies are in typewriter face, while others may be

from any type of computer printer.

The quality of this reproduction is dependent upon the quality of the
copy submitted. Broken or indistinct print, colored or poor quality
illustrations and photographs, print bleedthrough, substandard margins,
and improper alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete
manuscript and there are missing pages, these will be noted. Also, if
unauthorized copyright material had to be removed, a note will indicate

the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper left-hand comer and
continuing from left to right in equal sections with small overlaps. Each
original is also photographed in one exposure and is included in reduced
form at the back of the book.

Photographs included in the original manuscript have been reproduced
xerographically in this copy. Higher quality 6” x 9” black and white
photographic prints are available for any photographs or illustrations
appearing in this copy for an additional charge. Contact UMI directly to

order.

UMI

A Bell & Howell Information Company
300 North Zeeb Road, Ann Arbor MI 48106-1346 USA
313/761-4700 800/521-0600

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Linguistic Indicators

for Language Understanding:

Using machine learning methods

to combine corpus-based indicators

for aspectual classification of clauses

Eric V. Siegel

Submitted in partial fulfillment of the
requirements for the degree
of Doctor of Philosophy

in the Graduate School of Arts and Sciences

Columbia University

1998

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



UMI Number: 9834376

UMI Microform 9834376
Copyright 1998, by UMI Company. All rights reserved.

This microform edition is protected against unauthorized
copying under Title 17, United States Code.

UMI

300 North Zeeb Road
Ann Arbor, MI 48103

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



©1998
Eric V. Siegel

All Rights Reserved

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Abstract
Linguistic Indicators
for Language Understanding:
Using machine learning methods
to combine corpus-based indicators

for aspectual classification of clauses

Eric V. Siegel

Linguistics as a field has provided enormous insights that describe how the
thoughts behind language are reflected by the structure of sentences. For ex-
ample. one writes a paper in one week. but rides a bicycle for one hour. This
illustrates how prepositions (in and for) correspond to the type of event. Specif-
ically. in modifies a completed process. while for modifies an ongoing process.
The area explored by this thesis is. how can we best put our understanding of

linguistics to use in order to tap into the vast knowledge encoded in texts?

The ability to distinguish stative clauses. e.g.. “She resembles her mother.”
from event clauses. e.g.. “She ran down the street.” is a fundamental component
of natural language understanding. These two high-level categories correspond to
primitive distinctions in many domains. including, for example. the distinctions
between diagnosis and procedure in the medical domain. Stativity is the first of
three high-level distinctions that compose the aspectual class of a clause. These
distinctions in meaning have been well motivated by work in linguistics and

natural language understanding.
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Aspectual classification is a necessary component for appiications that per-
form certain natural language interpretation. natural language generation. sum-
marization. information retrieval. and machine translation tasks. This is because

each of these applications requires the ability to reason about time.

[n this thesis, [ develop a system to perform aspectual classification with
linguistically-based. numerical indicators. These linguistic indicators make use
of an array of aspectual markers. each of which has an associated constraint on
aspectual class. For example. only clauses that describe an event can appear with
the progressive marker. e.g.. “I was eating breakfast.” Therefore. the category of
a verb or phrase is reflected by a numerical indicator that measures how often it
occurs in the progressive. The values for such linguistic indicators are computed
automatically across corpora of text. We develop and evaluate fourteen indicators
over unrestricted sets of verbs occurring across two corpora. Qur analysis reveals
a predictive value for several indicators that have not previously been conjectured

to correlate with aspect in the linguistics literature.

Then. machine learning is used to combine multiple indicators in order to im-
prove classification performance. The models automatically derived by learning
are manually examined. revealing several linguistic insights regarding the indica-
tors and their interactions. Three machine learning techniques are compared for

this task: decision tree induction. a genetic algorithm. and log-linear regression.

We conclude that linguistic indicators successtully exploit linguistic insights

to provide a much-needed method for aspectual classification. Future work will
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extend this approach to other semantic distinctions in natural language.
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Chapter 1

Introduction

“To do is to be.” - Descartes
“To be is to do.” - Alexander D. Chaffee

“Do-be-do-be-do.” - Frank Sinatra

Many challenges for natural language processing require the classification of
words or phrases as one of a small number of categories. For example. word sense
disambiguation is the process of finding the meaning of an ambiguous word from
its context. e.g.. rwer bank versus Federal bank. A second example. aspectual
classification. is the problem of mapping a clause (e.g., a simple sentence) to one
of a small set of primitive categories in order to reason about time. For example.
events, such as, “You called your father,” are distinguished from states. such as.

“You resemble your father.”
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Aspectual classification is necessary for interpreting even the most simple
narratives in natural language. This is because. in general. the sequential order
of clauses are not enough to determine the underlying chronological order. For

example. consider:
“John entered the room (event). Mary stood up (event).”

In this case. the first sentence describes an event that takes place before the event

described by the second sentence. However. in.
“John entered the room (event). Mary was seated behind the desk (state).”

the second sentence describes a state. which begins before the event described
by the first sentence. Aspectual classification is a necessary step towards auto-

matically identifying relationships in time between sentences.

The ability to distinguish stative clauses. e.g.. “She resembles her mother,”
from event clauses. e.g.. “She ran down the street.” is a fundamental component
of natural language understanding. These two high-level categories correspond to
primitive distinctions in many domains. including, for example. the distinctions
between diagnoses and procedure in the medical domain. and between analyses

and activity in the financial domain.

Stativity is the first of three high-level distinctions that compose the aspectual
class of a clause. Events are further distinguished aleng two other dimensions.
First. completedness determines whether an event reaches a culmination or com-

pletion point in time at which a new state is introduced. For example. “I made
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a fire” is culminated. since a new state is introduced - something is made.
whereas. I gazed at the sunset™ is non-culminated. Second. atomucity, distin-
guishes atomic (instantaneous) events. such as. “She noticed the picture on the
wall.” from eztended events. such as. “She ran to the store.” By dividing events

along the second and third dimensions we derive four classes of events

There is an array of semantic entailments related to aspectual category that
linguistically motivates each of these three particular semantic distinctions. For
example. one such entailment pertains to prepositional phrases that denote the
duration of a state or event. “For an hour” can denote the duration of a non-

culminated event. as in.
“I gazed at the sunset for an hour.”

[n this case. an hour is the duration of the gazing event. However. when applied

to a culminated event. it denotes the duration of the resulting state. as in.
“I left the room for an hour.”

[n this case. an hour is not the duration of the leaving event. but. rather. the

duration of what resulted from leaving. i.e.. being gone.

Such aspectual entailments also illustrate the value of automatically classify-
ing clauses according to aspect: once the category of a clause has been identified.
they support an array of inferences pertaining to time. These inferences are
crucial for natural language understanding and generation applications such as

machine translation, processing medical reports. summarization. and augmenting

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



